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ABSTRACT

In this paper we explore the design space of data caches
looking for the combinations of design parameters that pro-
duce the best results at the smallest sizes. We introduce a
technique named Pollution Control Victim Cache (PCVC)
which improves the Pollution Control Cache (PCC), is sim-
pler and performs better. Our simulations were run on the
SimpleScalar suite running the Commbench benchmarks.
Our results indicate that Victim Caches and Stream Buffers
do not perform well in the small systems we simulated. The
PCC and our PCVC have shown promising results.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory Structures—Cache memories

General Terms

Design, Performance
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1. INTRODUCTION

The design of embedded systems is constrained by several
parameters including power, size, weight, reliability, time
to market, performance, and cost. Cache memories provide
performance gains but do have some negative impact on
IC size, cost (IC area and design/test) and power. Ideally,
one would like to use the smallest cache because of IC size,
cost and reduced power, but needs the performance gains of
the largest cache.

In this paper we explore the design space of data caches
looking for the combinations of design parameters that pro-
duce the best results at the smallest cache sizes. We present

*LACTEC - www.lactec.org.br
TNticleo de Redes Sem Fio e Redes Avangadas (LARSIS)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SBCCI’08, September 1-4, 2008, Gramado, Brazil.

Copyright 2008 ACM 978-1-60558-231-3/08/09 ...$5.00.

simulation results for a memory hierarchy consisting of a
first level data cache (L1), one or more specialized buffers,
and DRAM. We introduce an improvement over the Pollu-
tion Control Cache, named PCVC, that is simpler and per-
forms better than the original PCC [15]. Our simulations
compare four low cost techniques for improving the perfor-
mance of the cache hierarchy with the same benchmarks and
processor-memory design parameters. Thus, the compar-
isons are “on a level playing field” and the performance gains
from each of the designs can be assessed more easily. The
simulators are based on the SimpleScalar suite [2] and we use
precise models for the memory hierarchy and for the mem-
ory bus, and four different processors with different levels of
instruction level parallelism and complexity. The workload
consists of six applications in networking/multimedia from
Commbench [16].

There are several techniques to improve the performance
of the memory hierarchy, such as temporality-based caches
[10], non-critical loads [5, 14], non-vital loads [9], and slack
[4]. These techniques can indeed improve performance, but
their implementations appear to be too complex for em-
bedded systems. The annex-cache is similar to the victim
cache [6] but we chose the PCC because it compares more
directly to the victim cache.

An evaluation that is somewhat similar to ours is pre-
sented in [13], where the effect of design parameters on
cache performance is examined. The authors investigate the
effects of organization, associativity, capacity and replace-
ment policy on miss rate. The authors assessed only the
miss ratio, used the most basic cache simulators from the
SimpleScalar suite [2], and run simulations of the general
purpose SPEC 2000 benchmarks.

In Section 2 we describe the simulation environment and
methodology, while in Section 3 we present the designs for
the various caches/buffers. Section 4 contains the simulation
results and discussion, and our conclusions are presented in
Section 5.

2. SIMULATION ENVIRONMENT

The simulations were run on modified versions of the sim-
outorder simulator from the SimpleScalar suite [11, 2, 1].
Sim-outorder is an execution driven, cycle-accurate, out-of-
order simulator. The simulators run the applications from
the CommBench suite [16] since these are representative of
the workloads found in networking systems. The reader
should refer to [16] for details concerning the benchmark
programs.



We modelled four processors, each defined by the triplet
(scalarity, RUU size, LSQ size). By scalarity we mean the
width of the fetch, decode, issue, commit stages, and the
number of integer and floating point ALUs. In all models
there is only one floating point multiplier/divider. The RUU
is the Register Update Unit [12], similar to a reorder buffer,
and the LSQ is a load-store queue that holds memory ref-
erences that await completion at memory. The four models
are (1,8,4), (2,16,8), (4,32,16), and (8,64,32). Instructions
and data are 32 bits wide.

The cache models were simulated with capacities of 1, 2,
4, 8, and 16 KB, and with block sizes of 8, 16, 32 and
64 bytes. Unless stated otherwise, the data cache is direct-
mapped. All CPU models have two ports into the data
cache to support up to one read and one write per cycle.
The bus from the data cache to memory is 8 byte wide (two
words), and the DRAM access latency is 18 cycles for the
first reference to a block, with subsequent pairs of words
being accessed every 2 cycles. In all simulations the instruc-
tion cache has a relatively large capacity of 32 KB so its
performance does not interfere with that of the data cache.

Miss Status Holding Register.

In a lockup-free cache a reference that misses in the cache
is recorded in a Miss Status Holding Register (MSHR) buffer
while the missing datum is fetched from memory. During the
fetch other memory references that hit can be serviced di-
rectly from the cache. An MSHR holds all the information
regarding an outstanding miss: address of the missing block,
functional unit to which the missing word must be delivered,
and several status and control bits [8]. In a given memory
system, the number of MSHRs determines how many out-
standing misses can be sustained by the cache in any inter-
val. If there are no free MSHRs, on a miss the processor
must stall until one becomes free. Some improvements to
the original lockup-free caches are presented in [3], along
with some design variations that reduce the stalls caused by
more than one outstanding miss to the same cache block.

Memory interface in SimpleScalar and MSHRs.

The model of the interface between the L1 caches and
L2/memory in SimpleScalar assumes there is an unlimited
number of MSHRs, and thus the cache interface can handle
an unlimited number of concurrent misses. This is a reason-
able assumption when considering the design of very aggres-
sive superscalar processors, which was one of the intended
applications of SimpleScalar. For less ambitious processors,
like most of those in embedded applications, a somewhat
more realistic model for the memory interface is desirable.

We adapted the simulator to use a limited number of
MSHRs and to keep a record of all activities concerning
outstanding misses. In our model a second reference to a
block previously recorded in an MSHR is not counted as an
additional miss. However, the latency of that reference is
computed as the time elapsed until the block is brought in
from memory to satisfy the primary miss to that block, as
suggested in [3].

A series of experiments were run to assess the impact of
limiting the number of outstanding misses. Figure 1 shows
the changes in the number of instructions completed per
cycle (IPC) as capacity and block size are varied. We tested
two extreme versions of the processor: one is a single-issue
pipeline, and the other is an aggressive superscalar processor
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Figure 1: Original SS versus MSHR limited SS

that can issue eight instructions per cycle. The values shown
are averaged over the six benchmarks.

The effects of a non-blocking cache on a narrow single-
issue pipeline are minimal since at any one cycle there is
at most one load or store at the memory interface. As ex-
pected, the plots for this processor show slight differences
in performance between the original SimpleScalar and the
model with MSHRs. For large blocks (64 bytes), the MSHRs
add a limited degree of associativity to the direct mapped
cache since secondary references to an outstanding miss are
all recorded on the MSHR and serviced directly from it, thus
incurring in smaller latencies. Furthermore, for the smaller
caches, with as few as 16 blocks (1 KB), the MSHRs add
capacity and thus hit ratios improve. The plots for 1 MSHR
show a decrease in IPC, when compared with an unlimited
number of MSHRs. This is expected because of the more
precise accounting of latency and hit ratio.

The wide-issue processor imposes the highest demand on
the memory system, since it is possible to execute up to eight
concurrent memory references. As shown on Figure 1, for
caches with many blocks (8 bytes/block) there is little dif-
ference between the original model and that with 4 MSHRs.



For small caches with few blocks (1IKB=16x64 bytes/block)
the number of secondary hits on the MSHRs are sufficient to
improve the performance of our model by roughly one half of
an IPC. This improvement comes from the combined effects
of associativity, and the victim block being held in the cache
until just before the new block is loaded, possibly affording
more hits on the outgoing block. As expected for this wide-
issue processor, a single MSHR performs the worst in all
combinations of block and cache sizes.

3. CACHE MODELS

In all that follows the simulator is run with four MSHRs,
results are shown only for processors capable of issuing two
and four instructions per cycle, and block sizes are either
16 or 32 bytes.

Victim Cache.

A victim cache (VC) is a small fully-associative buffer that
holds blocks which were evicted from the L1 [7]. The VC
adds some associativity to a direct mapped cache, thus elimi-
nating costly conflict misses, without increasing significantly
its size or complexity. Figure 2 shows a block diagram of a
VC attached to a direct mapped cache.
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Figure 2: Victim cache

Stream Buffer.

A stream buffer (SB) is a small associative buffer that
prefetches cache blocks with addresses just beyond that of a
missing block [7]. If the processor references words in some
linear sequence, it is likely that the stream buffer can fetch
blocks ahead of the misses. When the actual references do
occur, they are serviced from the buffer with low latency.
The block diagram of a stream buffer is very similar to that
in Figure 2, except that the SB operates as a queue rather
than as a cache. An SB can be very efficient in removing
capacity and compulsory misses in L1, and is also efficient
in reducing conflict misses on the instruction cache. In both
data and instruction fetches, an SB can lead to substan-
tial improvement in the latency of the references that miss.
However, bus traffic can be dramatically increased by the
eager fetches that are not always useful.

Pollution Control Cache.

Cache pollution occurs when blocks that are referenced of-
ten get replaced by blocks that are scarcely referenced  thus
‘popular’ blocks are evicted from the cache by ‘unpopular’
blocks, leaving the cache polluted. On a miss, this pollu-
tion tends to cause two misses, one to load the unpopular
block and another to reload the evicted popular block. The
Pollution Control Cache (PCC) is a small fully associative
cache that operates in parallel with the L1 [15]. When a
miss occurs, the block is loaded on the PCC; if this block is
referenced a second time, then it is moved to the L1, possibly
avoiding the eviction of a popular block.

4. RESULTS

Victim Cache.

The simulation results for the victim cache are shown in
Figure 3, with a processor of width two and block size of
16 bytes, and compared to the base model that is equipped
with 4 MSHRs (MSHR(4)). On the top are shown the aver-
ages of the miss rates for the six programs. For the smallest
cache (1 KB) the addition of a victim cache with 16 blocks
(VC(16)) improves the miss rate by 11%, while with a VC
with just one block (VC(1)) the improvement is 6%. The
VC adds both capacity (more blocks) and associativity to
the cache, and this is more evident for the smaller sizes.
For the larger caches, the gains are inversely proportional
to cache size. The Figure 3 (bottom), shows for a VC with
4 blocks, the miss rates for the individual programs. The
benefits are obvious for the smaller caches, especially for
the applications JPEG-ENC, CAST-ENC and DRR, that have
large data sets and good temporal locality.
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Figure 3: MSHR and VC, width=2, block_size=16



Stream Buffer.

The tags in the simulated stream buffers (SB) are checked
on all blocks in all ways because this improves the latency for
reference streams of arbitrary stride. On a hit on the SB,
the requested word is forwarded to the processor and L1.
In the plots shown below, the organization of the buffers
is given as (SB(depth, associativity)). Figure 4 shows bus
occupation for processors of width (w) one and four, and
block size of 32 bytes (b_s=32)). This block size was chosen
since it causes the most traffic on the bus. For SBs with a
single block (SB(1,x)), bus occupation is roughly 30% higher
than in the base model. SBs with more than four blocks have
a much higher occupation, but associativity alleviates this,
as with (SB(4,1)) and (SB(4,4)), for example.
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Figure 4: SB: bus occupation for processors of w=1
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In [7], the author investigates the effects of the SB on miss
rates and ignores bus occupation and IPC. Figure 5 shows
plots of miss rate (top) and IPC (bottom) for a processor of
width two (w=2) and block sizes of 32 bytes. The smaller
SBs, (SB(1,1)) and (SB(1,4)), cause the lowest bus occupa-
tion and the higher miss ratios while yielding the best per-
formance, or perhaps, not the worst performance. Except
for the largest cache sizes, the SBs cause a decrease in per-
formance. This can be explained by a very rough estimate:
there is a memory reference every 4 instructions (2 cycles
for width=2), with more than one miss every 10 references.
There is a miss every 20 cycles and each miss is serviced in
20 cycles. If the SB is causing additional fetches from mem-
ory (some of which useless) then bus occupation and cache
refill latency both increase and slow down the processor.
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Pollution Control Cache.

We simulated two different models of the pollution control
cache, namely PCC1 and PCVC, with the second differing
from the proposal in [15]. Figure 6 shows the two models.
In the PCC1 there is an 4 block VC attached to the L1 so
that blocks evicted from L1 are stored in the VC. The three
buffers L1, VC and PCC are searched in parallel on a ref-
erence. In our new model, named Pollution Control Victim
Cache (PCVC), the PCC acts as a victim cache for L1 so
that blocks evicted from L1 are stored back in the PCC.
In the plots shown below, the organization of the buffers is
given as (PCC1(PCC blocks, VC blocks)).

PCC1.

On a miss in L1, the block « is loaded onto the PCC.
On a second reference to block «, it is moved to L1 and
the block evicted from the L1 is moved to the VC. If the
PCC is small (1-4 blocks), either the miss rate increases or
the gain is small, as shown in Figure 7 for the 1 KB cache.
With the larger PCCs (8-32 blocks) there is a reduction of
roughly 50% in the miss rate. As for the overall performance,
the poor miss ratios of the small PCCs are reflected on the
IPC, as can be seen on the bottom of Figure 7. For the
larger PCCls, the gains in IPC range from 13% (8 blocks)
to 15% (32 blocks).

PCVC.
On a miss in L1, the block « is loaded onto the PCC. On
a second reference to block «, it is swapped with the block
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w=2, b_s=32

evicted from the L1. The behavior of the smaller PCVCs
is slightly better than that of the smaller PCCls, as shown
in Figure 8. The gains in miss rate of the larger PCVCs
decrease slightly with each doubling in size: for the 8, 16,
and 32 block PCVC the gains are 64%, 88%. and 119%,
respectively. Since the PCC also acts as a victim cache,
its overall performance improves with size, as shown on the
bottom of Figure 8. For the smaller 1 KBytes cache, the
gains are 13% and 19% for the PCC with 8 and 32 block,
respectively.
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PCCI versus PCVC.

Our simulations indicate that a PCVC is a more effective
design than a PCC1 because it is simpler —comparisons
on two sets of tags rather than three— and smaller —only
n blocks in the PCVC rather than PCC(n)+VC(m) blocks.

Table 1 compares the results in Figures 7 and 8. It shows
the performance gains achieved with the PCC1 and the
PCVC when compared to the base model which is an L1
cache with 4 MSHRs. The first row, labelled MSHR(4) shows
the IPC for the base model. The next four rows show the
IPC ratio for two of the configurations that provide gains,



buffers with 4 and 32 blocks. As mentioned before, smallest
caches benefit the most from the buffers. The next two rows
compare a given combination of cache+buffer with a sim-
ple L1 twice as large: a 1 KB+PCVC(32) is compared to a
2 KB L1, a 2 KB+PCVC(C(32) to a 4 KB L1, and so on. The
last three rows compare an N KB L1+PCVC(32) to caches
with capacity 4N, 8N and 16N.

cache size 1K 2K 4K 8K 16K
IPC base MSHR(4) 0.81 0.87 1.02 1.15 1.27

PCCl(4,4)/BASE 1.06 1.02 0.99 0.96 0.95
pPCvC(4)/BASE 1.04 1.01 097 094 0.95
pccl(32,4)/BASE 1.15 1.14 111 1.06 1.01
PCVC(32)/BASE 120 1.17 1.18 1.07 1.01
pcCl(32,4)/BAsE«2  —  0.96 0.86 0.86 0.85
PCVC(32)/BASE*2 — 1.10 1.00 1.05 0.97
PCVC(32)/BASEx4 — — 095 0.89 0.95
PCVC(32)/BASE*8 — — — 084 081
povec(32)/BAsEx16 — @ — @ —  —  0.78

Table 1: IPC gains of PCC1 and PCVC

For the smallest 1 KB caches, the L1+PCVC with at least
4 blocks has a better performance than a simple L1 twice as
large, while for the PCC1 8 blocks are needed. The results
for the 32 block PCVC show a 10% improvement in TPC
over the simple 2 KB L1, and just a 4% decrease when com-
pared to a simple L1 four times larger (4 KB) and with twice
the capacity of the combined L1+PCVC. For the 8 block
PCC1 and PCVC, the gains in performance over a simple
2 KB L1 are 4.6% and 4.8%, respectively (not on the table).
The last rows show that the PCVC(32) performs well indeed
when compared to much larger caches. The performance of
a 1 KB+PCVC(32) is 0.78 of that of a 16KB L1.

5. CONCLUSION

We investigated four techniques for improving the perfor-
mance of memory hierarchies for embedded systems. The
simulation results indicate that a Victim Cache might be
useful for applications that have large data sets and good
temporal locality. For applications without good locality,
the Victim Cache did not perform well for the sizes, pro-
grams and data sets we employed. For the class of systems
we tested, the Stream Buffer performed rather poorly. It
may show better performance on a more complex bus, or
if placed between the L2 and DRAM where the bus traf-
fic is less intense than between the L1 and processor. The
two versions of the Pollution Control Cache we tested have
shown promising results, with our design, the PCVC, out-
performing the more complex PCC1. We intend to compare
the size, complexity and power consumption of the PCC1
and PCVC.
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