Diagnosis on Computational Grids for Detecting Intelligent Cheating Nodes

Felipe Martins, Rossana M. Andrade
GREat — UFC
Fortaleza,CE — Brazil

Abstract

Applications on reputation-based computational grids
are prone to attacks from malicious nodes. These nodes
may not only corrupt the result from processed jobs, but
also intentionally acquire a good reputation so as to obtain
privileges to damage other nodes. In order to detect and iso-
late intelligent cheating nodes from a P2P grid computing,
this work proposes a system-level diagnosis model, using a
strategy based on voting and honeypots. The model is eval-
uated by means of scenarios that take into account different
percentages of malicious and cheating nodes. Achieved re-
sults show the model’s robustness and efficiency, once all
cheating nodes can be detected, with an accuracy of 99.4%
of jobs being correctly processed.

1. Introduction

Computational grids are characterized by the collabora-
tive work among environment devices, where neither the
involved hardware platforms nor the geographical location
play an important role. Roughly speaking, processing units
in a grid donate their computational resources in order to
provide together greater computational power. However,
the success of these environments is based on the require-
ment that all units (nodes) are inclined to positively con-
tribute, offering their resources in a right way. So, the grid
devices must correctly compute the jobs assigned to them,
returning valid results.

Nevertheless, in Peer-to-Peer computational grid there is
no real assurance that this requirement is achieved, because
there may be nodes acting maliciously, providing corrupted
results and compromising the efficiency of the grids. The
motivation for such a harmful action may be financial, for
fame or simply “evilness” [1]. Unfortunately, a few works
in literature have driven efforts to deal with this problem of
malicious behavior. With the aim to avoid malicious nodes
inside these environments, we presented earlier a distrib-
uted and hierarchical system-level diagnosis model based
on information on the reputation of the nodes [2]. To detect
nodes that return arbitrary and corrupted results, the model

Aldri L. dos Santos
NR2 - UFPR
Curitiba,PR — Brazil

Bruno Schulze, José N. de Souza
LNCC
Petrépolis,RJ — Brazil

considers that the role of a node is attributed according to
its reliability. Three roles are proposed: the Executor nodes
are less reliable and only provide the resources; the Tester
nodes are responsible for providing resources and testing
the Executor nodes; and the Ultra-Reliable nodes, the most
realiable ones, provide the resources, test and manage a
group of Executor and Tester nodes, deciding, among other
activities, whether a given node is malicious or not.

Although the results presented in this previous work have
shown the strength and scalability of the model, it does not
deal with intelligent cheating nodes. In a grid, cheating
nodes provide their resources and contribute to the grid for
a while to obtain a good reputation until they pass to return
arbitrary or manipulated results. The presence of this kind
of node can be even more disastrous. Nodes acting ma-
liciously with really high reputation may compromise not
only the execution of ordinary jobs and the grid applica-
tions, but also the diagnosis process, thereby damaging the
other grid nodes.

In order to detect this rational behavior, we present here
an approach that addresses the presence of intelligent cheat-
ing nodes in P2P-based grid plataforms. To do that, this
work extends the model presented in [2], adding new fea-
tures such as the use of nodes (honeypots) whose behavior
is previously known. If the decision of an Ultra-Reliable
node (UR) on the honeypot is not in accordance with the ex-
pected behavior, that UR will be considered malicious and
subsequently excluded from the environment. Besides, as
UR nodes can also provide their resources, it is also nec-
essary to guarantee that these nodes will not return invalid
results. To handle that, UR nodes periodically must test one
another. If an UR node is believed suspicious by another UR
node, a few UR nodes gather together to determine whether
the accused node is to be excluded or not.

This way, the current System-Level Diagnosis Model de-
tects and isolates all malicious intelligent cheating nodes
interested in getting a high reputation to damage the appli-
cations under execution and the grid as a whole. To evalu-
ate the model, simulations were run in two scenarios (with
and without the proposed model), addressing different num-
bers of malicious nodes. For the experiment, such metrics



as processing cost, degree of detection and accuracy were
aimed at. We also introduce a graphical interface that al-
lows a visualization of how the nodes behave in the system.
This paper is organized as follows: Section 2 introduces
the taxonomy and the consequences of malicious behavior
in computational grids and briefly presents the fundamen-
tals of system-level diagnosis. Section 3 shows an overview
of the diagnosis model previously proposed in [2]. Section
4 introduces the extension of this model, its features and
mechanisms. The experiments and achieved results as well
as the developed graphical interface are discussed in Sec-
tion 5. Section 6 brings some related works. Lastly, the
conclusion and future works are presented in Section 7.

2 Background
2.1 Malicious Behavior in Grids

Distributed computing environments, especially compu-
tational grids, can be formed by nodes that are somehow
motivated to damage the application’s performance, lead-
ing to different kinds of faults, such as the byzantine ones
[3]. In this scope, malicious behavior in grids is classified
into three categories:

e [nactive nodes: nodes that intentionally behave as in-
active, either by omitting information, refusing to for-
ward packages or even stopping providing their re-
sources when asked for;

e Selfish nodes: nodes that refuse any kind of access
to their resources at the same time that they consume
resources from other nodes. This free-rider behavior
conflicts with the collaborative principle of the grids
as this kind of node only favors its own interests;

o Cheating nodes: nodes that provide their resources,
processe the expected jobs, but return arbitrary or ma-
nipulated results. The presence of these nodes in a grid
can damage the application.

Cheating nodes may be also subdivided into fool, com-
mon and intelligent nodes [4]. Fool nodes always return ar-
bitrary results. Common nodes return arbitrary results with
a certain fixed probability. Intelligent nodes, on the other
hand, act normally for some time in order to obtain a good
reputation up to the extent when they deliberately start to
return arbitrary results with a fixed probability. As they
present a sensible behavior, these nodes are the hardest to
deal with.

In reputation-based grids, the damage from intelligent
cheating nodes can bring unwished consequences, because
once they obtain a high level of reliability, they can sub-
vert all the system and provide false pieces of information
about the other nodes which may lead idoneous nodes to be
included in blacklists.

2.2 System-Level Diagnosis

System-level diagnosis has been commonly used as a
strategy to tolerate faults in distributed systems. In this case,
periodical tests are performed on the elements of a system.
The set of results of such tests (called a syndrome) allows
the identification of which nodes are presumed to be faulty.

In the literature, the diagnosis models proposed in [S]and
[6] are noteworthy. The latter, known as MM (Maeng and
Malek), assumes that a certain Tester node sends to two
other distinct nodes the same test task. Following, the
Tester node collects and compares the results produced by
the tested nodes. Then it sends the comparison to a central
node, responsible for diagnosing the tested nodes. If the
two results are the same, the central node considers both
the tested nodes as non-faulty. But if the results are differ-
ent, the central node, based only on this information, will
not be able to identify which (if not both) of the nodes is
faulty.

In the model presented in [2], a syndrome is obtained
through test-jobs. The following section describes the dis-
cussed diagnosis model in more details.

3 Grid-Applied Diagnosis Model Overview

In the context of computational grids, a diagnosis model
based on comparison and reputation has been previously
proposed [2]. The model provides a security strategy to
detect and minimize the presence of malicious nodes inter-
ested in corrupting the results of their jobs. To do that, the
model defines the role of a grid node as Executor, Tester or
Ultra-Reliable, according to its current reputation. Nodes
with a high reputation are considered as better resource
providers and tend to have higher status. Malicious nodes
that are detected manipulating results have lower reputation
and thus tend to be excluded from the grid.

According to the model, the reputation of each node is
inferred through test-jobs, which are nothing else than com-
mon jobs whose results are previously known by the node
that created it. This way, it is possible to know the behavior
of the target node to be tested (Executor). If an Executor
node provides an answer different from what is expected,
the Tester node reports this Executor to its Ultra-Reliable
node (UR) as a malicious node.

Figure 1 illustrates the diagnosis strategy of this model.
Two nodes in the system, A and B, acting as Testers,
periodically send two different test-jobs to a node C, acting
as an Executor (a). Node C then executes the test-jobs and
sends the results back to the respective Tester nodes (b).
Next, nodes A and B send their perceptions on node C to
node D, acting as an UR node (c). Taking into account
these analysis of perception, node D issues a diagnosis
about node C.



UR UR UR

© ©

Tester Tester Tester

: Tester ‘: Tester :
Test Test Outcome Outcome
Jjob X jobY of X of Y

©

Executor

Opinion
from A
about C

Opinion
from B
about C

Executor Executor

(a) (b) ()

Figure 1. Diagnosis strategy for the detection
of malicious nodes [2]

Thus, if two Tester nodes A e B agree upon the status
(malicious or idoneous) of the Executor node C, the Ultra-
Reliable node D assumes these perceptions to be valid and,
depending on the results, condemns or not node C. But if the
Tester nodes A e B diverge about the status of node C, then
D analyzes the historical behavior of the Testers in order to
check and see if there is a repeating pattern (for example,
if one of them rejected all the tests that it applied, or if one
of them rejected only the tests applied to a given Executor
node, etc). Based on this behavior pattern analysis, an UR
node may decide if any of the nodes (Tester or Executor)
acted in a malicious way.

Although this approach seems to be very simple and ro-
bust for detecting fool and common cheating nodes, it is not
capable of detecting malicious nodes that act rationally with
the purpose of achieving high reputation and, consequently,
UR status. If any malicious node becomes an UR, the sys-
tem is jeopardized, since such nodes can arbitrarily decide
the destiny of other nodes with lower status. Considering
the possibility of collusion, a malicious node with high reli-
ability will be able even to promote its accomplices, ending
up in the contamination of the whole environment.

4 Voting and Honeypots-based Diagnosis
Model

The algorithm employed allows the identification of
malicious behavior of resource provider nodes considered
highly reliable. Such UR nodes are tested periodically by
other UR nodes. So, if an UR node has doubts about an-
other UR node due to its wrong test-job result, the former
will invoke a group of UR nodes to decide on whether the
suspected UR node is malicious or not.

The size of the diagnosis group - given by a function f{n)
described later - varies according to the total number of UR
nodes in the environment. A diagnosis group is composed
of those UR nodes with the highest reputation. Besides, nei-
ther the suspected UR node nor the complaining UR node
are selected to be members of the group. Once the size and

the members of the diagnosis group are chosen, the com-
plainant asks them to diagnose the suspected node.

The creation of the diagnosis group is illustrated in Fig-
ure 2. It presents six UR nodes, each one responsible for a
logical cluster made up of a set of eight nodes (Executors
and Testers). In a certain moment, node A sends a test-job
to node E (a). Node A suspects that node E responded an
arbitrary result to the test and considers it to be a possible
malicious node. Then node A invokes a diagnosis group
which is composed of the UR nodes with the highest repu-
tation. In this case, as the system has six nodes, the group
will have three components, according to Function 1, de-
scribed later. In the example, nodes B, D and F are chosen
and node E is the suspected node (b).

{© '

(b)

Figure 2. Invocation of the Diagnosis group

Once the diagnosis group is arranged, each UR mem-
ber of the group checks the suspected UR node to judge its
behavior. Then, each UR member creates a different test-
job and sends it to the suspected UR node. Clearly, the
UR members know in advance the result of the submitted
test-jobs. The suspected UR node processes the test-jobs
and sends the results back. Each UR member compares
the responses against the expected result. The perceptions
from all the members about the suspected UR node are next
broadcasted to the members of the group only. At the end,
each UR member in the group knows the opinion of the
others and, using a majority voting scheme, the group diag-
noses the behavior of the suspected node.

If the suspected UR node is considered guilty (ma-
licious), the UR node with the highest reputation in the
group is chosen as the coordinator, which is responsible
for excluding the malicious UR node and redistributing its
Tester and Executor nodes among other UR nodes in the
system. In order to guarantee the efficiency of the model, it
is assumed that the number of reliable UR nodes is higher
than the number of cheating UR nodes. Figure 3 illustrates
the decision-making process of the UR nodes B, D and F
on the suspicious UR node E.

The members of the group test node E with their test-jobs
(a). Based on a comparison between the results returned by
node E and the expected results, each member can evaluate
the suspected node E. Then, they exchange their percep-
tions on node E (b). If the majority believes the suspected



©

Figure 3. Decision-taking process

UR node to be malicious, the member with the highest rep-
utation in the group - in this case, node D, called the coor-
dinator - is responsible for excluding node E from the grid
and including it into a blacklist. Next, the coordinator must
redistribute the Executor and Tester nodes that were man-
aged by node E among the other UR nodes in the system
(c). This cluster reconfiguration phase as well as reputation
calculation remains as defined in the original approach [2].

4.1 Diagnosis Group Size

The size of the diagnosis group must be carefully cho-
sen. Ideally, all UR nodes (with the exception of the sus-
pected and the complaining nodes) should participate in the
group. However, the number of exchanged messages during
the decision-making phase could become extremely high,
making the solution non-scalable. In order to restrict the
number of nodes in the diagnosis group, without compro-
mising the scalability of the system nor the efficiency of the
whole process, the algorithm makes use of a function based
on the total amount of UR nodes in the grid, as described
below:

f+zy—{1,2} - 7% (1

F(n) = 1 ,ifn<4
"= logan] + ([logan] mod 2)+1 ,ifn >4

where n represents the total amount of UR nodes.

Because of the use of a logarithmic function, the size of
the diagnosis group suffers little variation regardless of the
number of UR nodes in the environment, which avoids a
high overhead when the members of the group must later
exchange messages. As the value that represents the group
size has to be an integer, the result found is truncated by us-
ing the floor function. Besides that, the size must be an odd
number in order to prevent a tie after the votes are counted.

Although a diagnosis group is composed only of the
nodes with the highest reputations, it is possible to have
malicious nodes inside the group. However, even these
nodes remain under continuous monitoring by the others
UR nodes, playing as honeypots, as described in the next
section. This way, it is possible to detect and eliminate them
from the environment, as shown in Section 5.1.

4.2 Honeypots

Originally, honeypots are computing resources whose
goal is to be attacked and compromised by others in order
to understand the attackers’ strategy. This approach, largely
found in security systems of traditional networks, can also
be applied to grid environments, with the purpose of col-
lecting information on malicious nodes.

Thenceforth, the system’s administrator can insert emu-
lated nodes into the grid. Each honeypot can play as ido-
neous ou falsely malicious in order to find if the UR node
responsible for testing it is inferring the correct diagnosis.
This way, the system will know if an UR node is a disguised
malicious node. If so, it will be excluded from the grid and
inserted into a blacklist.

5 Experiments

To validate the proposed diagnosis model, experiments
were run in the GridSim grid simulator [7]. The scenar-
ios assumed an environment initially of 200 Executor nodes
managed by only one UR node. During the simulation, the
Executor nodes may improve their reputation, thereby at-
taining a higher status. In the first scenario, the scheme
to detect intelligent cheating nodes is not applied, so the
nodes that gain the UR status can freely act maliciously. In
the second scenario, the decision-making algorithm and the
honeypots were active as shown next. We also presented
a graphical interface built with the purpose of allowing the
set-up of these scenarios and the visualization of the gener-
ated logs.

5.1 Scenarios Description

In both scenarios, nodes that may act maliciously were
modeled with a probability of 25% chance of returning a
non expected result. Also, new nodes can join the environ-
ment after a test round is concluded. Every time a new node
joins the grid, a method is called to randomly define if the
new node will have a malicious behavior, with a probability
of 50%. Nevertheless, the maximum number of nodes in
the environment at any given moment is limited to 200.

Moreover, in both scenarios the total amount of UR
nodes was limited to 10. Different percentages of cheating
UR nodes were experienced, namely 10, 20 and 40%. The
number of malicious Executor nodes (1/6, 1/3 and 2/3 of the
total number, respectively) as well as the process of gener-
ating jobs involves the same procedures described in [6].
Besides, the scenarios were simulated with 8 test rounds
carried out in different periods (at each 6, 12 and 24 hours).

The experiments took into account metrics such as the
amount of detected malicious nodes (degree of detection),
the processing cost (the ratio between the number of test-
jobs and the total number of jobs) and the accuracy (the



ratio between the number of jobs correctly processed and
the total number of jobs).

5.2 Results

The variation in the quantity of detected malicious nodes
when the percentage of cheating UR nodes is varied in an
environment with 2/3 of its nodes compromised and tests
rounds at every 12 hours is presented in Figure 4. The figure
shows that the level of nodes detected is proportional to the
number of malicious nodes in the grid.

In addition, the variation on the total of malicious nodes
detected using the proposed scheme is irrelevant with just
10% of intelligent cheating UR nodes. This happens be-
cause there are much more malicious Executor nodes in
the grid than intelligent cheating UR nodes. However, the
heuristics for verifying UR nodes can enhance the efficacy
of the system, since more malicious nodes are detected and
inserted in the blacklist. Thus, the bigger the presence of
cheating UR nodes in the grid, the stronger the system is,
if compared to an environment without any verification.
While the scheme without verification detects 242 mali-
cious nodes, with 40% of the UR nodes cheating, the use
of the verification technique increases this number to 264
malicious nodes, a gain of approximately 10% in the degree
of detection.

Malicious nodes detected

Wih verification of UR @~
Without verfication of UR - -

10 20
Percentage of cheating UR nodes

Figure 4. Detection level with 2/3 of malicious
nodes and tests at every 12 hours

The system performance is reduced as the tests are less
often. But, it we emphasize that all cheating UR nodes are
detected, no matter the quantity of malicious nodes in the
environment nor the frequency of the tests. Further, for all
situations, the accuracy obtained through the use of the pro-
posed strategy is significantly higher when compared to an
environment without any verification. For example, accord-
ing to Figure 5, when there are 1/6 of malicious nodes, an
accuracy of 99.4% is obtained with 10% of cheating UR
nodes being tested in the environment at every 6 hours.
Without the verification and without honeypots, the accu-
racy plunges to 97.2% for the same quantity of cheating UR
nodes acting freely. Comparatively, the accuracy obtained
with the strategy is even better when 40% of the UR nodes
present a cheating behavior. While without verification the
accuracy is 89.7%, with the proposed scheme the accuracy

soars to 98.7%, representing a 9% gain. In the worst case
(with 2/3 of malicious Executor nodes, 40% of cheating
UR nodes and tests rounds at every 24 hours), the accuracy
plunges to 93%. Even in this situation, when more than
half of the grid is jeopardized, the system efficiency with
the proposed strategy is approximately 8.5% higher than an
environment without any sort of verification.

Percentage of accuracy

20
Percentage of cheating UR nodes

Figure 5. Accuracy with 1/6 of malicious
nodes and tests at every 6 or 12 hours

As for the same quantity of malicious Executor nodes
the accuracy obtained is almost the same when the tests are
taken at every 6 and 12 hours, it can be concluded that ap-
plying tests more frequently does not bring significant ben-
efits in the current model. As a matter of fact, with tests at
each 12 hours, it is possible to get a similar percentage of
jobs processed correctly, at the same time that the cost is re-
duced. Figure 6 shows the processing cost with and without
the proposed scheme for the verification of UR nodes.

Pursuant to the Figure 6, when applying tests at every 12
hours, the cost rises from 12.3% to 17% with the UR ver-
ification. In this case, it is necessary to know whether this
trade-off is acceptable for the application being executed.
Nevertheless, the results show that the processing cost does
not depend on the amount of malicious Executor nodes or
cheating UR nodes in the grid. It varies exclusively accord-
ing to the testing frequency. This feature gives the model a
good scalability.

"Wih verification of UR
Without verfication of UR St

Percentage of processing cost

12H
Test round frequency

Figure 6. Processing cost

5.3 Graphical Interface

GridSim offers the ability to create logs that store infor-
mation about each simulation run. These logs can be better



understood if represented as graphics. However, the extrac-
tion and analysis of the information stored in the logs is a
costly process. To follow the dynamics of the simulations in
the scenarios previously described and to make it easier to
interpret the results, a graphical interface was implemented.

The developed environment not only improves the pro-
ductivity of creating and setting scenarios, but also gener-
ates a new output log file with pieces of information de-
scribed in natural language. This feature allows the user to
analyze the results more immediately than if he or she had
to manually decipher the traditional log format.

Besides the readability, the interface offers the ability
to animate the information of the log file, by showing the
events in real time during the simulation. So it is possible
to accompany how the grid works, with information about
the tests and details about clusters and nodes in the environ-
ment, such as status, reputation, lifetime in the grid, if it is
an idoneous or malicious node, among others. The source
codes of the model and the graphical interface are available
at <http://www.great.ufc.br/ felipe/DGmodel .html>.

6 Related Works

Research on processing integrity in computational grids
is found in [4] and [8]. Such approaches propose strategies
based on spot-checking, whose job results are previously
known by the node responsible for the tests. But, all these
solutions are essentially centralized, which causes a high
cost for the manager node responsible for the tests, consid-
ering that every test-job is processed by a unique manager,
differently from our distributed and hierarchical approach.

In P2P systems, as in [9] and [10], a node can evaluate
the reliability of another node based on its reputation, which
is inferred through its interactions with the rest of the net-
work. A common issue to all these models is the fact that
they use information provided by other nodes. So, a node
can, intentionally and maliciously, condemn another node,
unfairly damaging its reputation. If this behavior spreads
out to the entire environment, the efficiency of such mod-
els becomes compromised. In [10], this can even be more
critical, because only negative feedbacks are considered.

With relation to the above approaches, the diagnosis
model here presented handles the existence of rational
nodes that obtain a high reputation in order to deliberately
damage other nodes in the grid. This way, the model is
able to exclude nodes that corrupt the jobs results that they
process, as well as to avoid the presence of intelligent cheat-
ing nodes interested in disrupting the application under ex-
ecution and the grid itself.

7 Conclusion and Future Work

The use of system-level diagnosis emerge as an efficient
solution against results manipulation attacks in P2P compu-
tational grids, since it allows to eliminate nodes that present

a malicious behavior. However, considering that cheating
nodes act rationally and can therefore obtain a good repu-
tation in order to damage the grid, it is necessary to incor-
porate new detection techniques to make the system more
robust and efficient.

The proposed model combines the use of honeypots with
a voting scheme in a grid environment, allowing the identi-
fication of all cheating nodes, independently of the number
of existing malicious nodes, as observed in the experiments.
The results also shows a significant processing accuracy im-
provement, since 99.4% of the jobs are correctly processed.
Hence, combining these techniques makes it possible to in-
crease the processing quality in grid computing environ-
ments. As a future work, a more extensive evaluation of
the metrics can be done as a means to reduce the process-
ing cost. Besides, this diagnosis model will be implemented
and incorporated to a real grid plataform, such as OurGrid.

References

[1] L. Catuogno, P. Faruolo, U. E. Petrillo, and I. Visconti. Reliable
accounting in grid economic transactions. In Grid and Cooperative
Computing - GCC Workshops, pages 514-521, 2004.

[2] F. Martins, M. Maia, R. M. de Castro Andrade, A. Luiz dos San-
tos, and J. Neuman de Souza. A grid computing diagnosis model
for tolerating manipulation attacks. In International Transactions
on Systems Science and Applications, volume 2, pages 135-146,
Erfurt, Germany, September 2006.

[3] M. Hollick. On the effect of node misbehavior in ad hoc networks.
In Proceedings of IEEE International Conference on Communica-
tions, ICC’04, volume 6, pages 3759-3763, 2004.

[4] S.Zhao, V. Lo, and C. GauthierDickey. Result verification and trust-
based scheduling in peer-to-peer grids. In P2P ’05: Proceedings
of the Fifth IEEE International Conference on Peer-to-Peer Com-
puting (P2P’05), pages 31-38, Washington, DC, USA, 2005. IEEE
Computer Society.

[S] F. Preparata, G. Metze, and R. Chien. On the connection assignment
problem of diagnosable systems. [EEE Transactions on Electronic
Computers, 16:848-854, 1968.

[6] J. Maeng and M. Malek. A comparison connection assignment for
self-diagnosis of multiprocessor systems. In Digest 11th Interna-
tional Symposium Fault Tolerant Computing, pages 173-175, 1981.

[7]1 R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling
for grid computing. In Journal of Concurrency and Computation:
Practice and Experience (CCPE), 2002.

[8] L. E G. Sarmenta. Sabotage-tolerance mechanisms for volunteer
computing systems. In CCGRID ’01, page 337, Washington, DC,
USA, 2001. IEEE Computer Society.

[9] R. Sherwood, S. Lee, and B. Bhattacharjee. Cooperative peer
groups in nice. Computer Networks, 50(4):523-544, 2006.

[10] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer
information system. In CIKM ’01: Proceedings of the 10 Inter-
national Conference on Information and Knowledge Management,
pages 310-317, New York, NY, USA, 2001. ACM Press.



